extension | φ:Q→Aut N | d | ρ | Label | ID |
C62⋊1S3 = C32×S4 | φ: S3/C1 → S3 ⊆ Aut C62 | 36 | | C6^2:1S3 | 216,163 |
C62⋊2S3 = He3⋊6D4 | φ: S3/C1 → S3 ⊆ Aut C62 | 36 | 6 | C6^2:2S3 | 216,60 |
C62⋊3S3 = He3⋊7D4 | φ: S3/C1 → S3 ⊆ Aut C62 | 36 | 6 | C6^2:3S3 | 216,72 |
C62⋊4S3 = C62⋊S3 | φ: S3/C1 → S3 ⊆ Aut C62 | 18 | 6+ | C6^2:4S3 | 216,92 |
C62⋊5S3 = C32⋊S4 | φ: S3/C1 → S3 ⊆ Aut C62 | 18 | 3 | C6^2:5S3 | 216,95 |
C62⋊6S3 = C22×C32⋊C6 | φ: S3/C1 → S3 ⊆ Aut C62 | 36 | | C6^2:6S3 | 216,110 |
C62⋊7S3 = C22×He3⋊C2 | φ: S3/C1 → S3 ⊆ Aut C62 | 36 | | C6^2:7S3 | 216,113 |
C62⋊8S3 = C3×C3⋊S4 | φ: S3/C1 → S3 ⊆ Aut C62 | 24 | 6 | C6^2:8S3 | 216,164 |
C62⋊9S3 = C32⋊4S4 | φ: S3/C1 → S3 ⊆ Aut C62 | 36 | | C6^2:9S3 | 216,165 |
C62⋊10S3 = C32×C3⋊D4 | φ: S3/C3 → C2 ⊆ Aut C62 | 36 | | C6^2:10S3 | 216,139 |
C62⋊11S3 = C3×C32⋊7D4 | φ: S3/C3 → C2 ⊆ Aut C62 | 36 | | C6^2:11S3 | 216,144 |
C62⋊12S3 = C33⋊15D4 | φ: S3/C3 → C2 ⊆ Aut C62 | 108 | | C6^2:12S3 | 216,149 |
C62⋊13S3 = C2×C6×C3⋊S3 | φ: S3/C3 → C2 ⊆ Aut C62 | 72 | | C6^2:13S3 | 216,175 |
C62⋊14S3 = C22×C33⋊C2 | φ: S3/C3 → C2 ⊆ Aut C62 | 108 | | C6^2:14S3 | 216,176 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
C62.1S3 = C2×C32⋊C12 | φ: S3/C1 → S3 ⊆ Aut C62 | 72 | | C6^2.1S3 | 216,59 |
C62.2S3 = C2×C9⋊C12 | φ: S3/C1 → S3 ⊆ Aut C62 | 72 | | C6^2.2S3 | 216,61 |
C62.3S3 = Dic9⋊C6 | φ: S3/C1 → S3 ⊆ Aut C62 | 36 | 6 | C6^2.3S3 | 216,62 |
C62.4S3 = C2×He3⋊3C4 | φ: S3/C1 → S3 ⊆ Aut C62 | 72 | | C6^2.4S3 | 216,71 |
C62.5S3 = C32.S4 | φ: S3/C1 → S3 ⊆ Aut C62 | 18 | 6+ | C6^2.5S3 | 216,90 |
C62.6S3 = C3×C3.S4 | φ: S3/C1 → S3 ⊆ Aut C62 | 36 | 6 | C6^2.6S3 | 216,91 |
C62.7S3 = C32.3S4 | φ: S3/C1 → S3 ⊆ Aut C62 | 54 | | C6^2.7S3 | 216,94 |
C62.8S3 = C22×C9⋊C6 | φ: S3/C1 → S3 ⊆ Aut C62 | 36 | | C6^2.8S3 | 216,111 |
C62.9S3 = C6×Dic9 | φ: S3/C3 → C2 ⊆ Aut C62 | 72 | | C6^2.9S3 | 216,55 |
C62.10S3 = C3×C9⋊D4 | φ: S3/C3 → C2 ⊆ Aut C62 | 36 | 2 | C6^2.10S3 | 216,57 |
C62.11S3 = C2×C9⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C62 | 216 | | C6^2.11S3 | 216,69 |
C62.12S3 = C6.D18 | φ: S3/C3 → C2 ⊆ Aut C62 | 108 | | C6^2.12S3 | 216,70 |
C62.13S3 = C2×C6×D9 | φ: S3/C3 → C2 ⊆ Aut C62 | 72 | | C6^2.13S3 | 216,108 |
C62.14S3 = C22×C9⋊S3 | φ: S3/C3 → C2 ⊆ Aut C62 | 108 | | C6^2.14S3 | 216,112 |
C62.15S3 = C6×C3⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C62 | 72 | | C6^2.15S3 | 216,143 |
C62.16S3 = C2×C33⋊5C4 | φ: S3/C3 → C2 ⊆ Aut C62 | 216 | | C6^2.16S3 | 216,148 |
C62.17S3 = Dic3×C3×C6 | central extension (φ=1) | 72 | | C6^2.17S3 | 216,138 |